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Abstract
Beginning in the early stages of Alzheimer’s disease (AD), the hippocampus reduces its functional connections to other cortical regions
due to synaptic depletion. However, little is known regarding connectivity abnormalities within the hippocampus. Here, we describe
rostral-caudal hippocampal convergence (rcHC), a metric of the overlap between the rostral and caudal hippocampal functional
networks, across the clinical spectrum of AD. We predicted a decline in rostral-caudal hippocampal convergence in the early stages
of the disease. Using fMRI, we generated resting-state hippocampal functional networks across 56 controls, 48 early MCI (EMCI), 35
late MCI (LMCI), and 31 AD patients from the Alzheimer’s Disease Neuroimaging Initiative cohort. For each diagnostic group, we
performed a conjunction analysis and compared the rostral and caudal hippocampal network changes using a mixed effects linear
model to estimate the convergence and differences between these networks, respectively. The conjunction analysis showed a reduction
of rostral-caudal hippocampal convergence strength from early MCI to AD, independent of hippocampal atrophy. Our results dem-
onstrate a parallel between the functional convergence within the hippocampus and disease stage, which is independent of brain
atrophy. These findings support the concept that network convergence might contribute as a biomarker for connectivity dysfunction in
early stages of AD.
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Introduction

Brain network dysfunction in Alzheimer’s disease (AD) is asso-
ciated with the accumulation of tau aggregates in the mesial
temporal isocortex [1], which spread to functionally and anatom-
ically connected structures, accompanied by subsequent

neurodegeneration [2, 3]. In AD, disrupted patterns of functional
connectivity are also present in the hippocampi [4] and their
functionally connected structures [5, 6]. In fact, connectivity dis-
ruption between the hippocampus and the posterior cingulate
cortex can also be observed in mild cognitive impairment
(MCI), suggesting that such abnormalities are present at early
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stages of AD [7–10]. However, while hippocampal connectivity
with other brain regions has been thoroughly studied, func-
tional connectivity changes within hippocampal areas re-
main unclear in MCI and AD.

The examination of the Venn diagram–like overlap be-
tween two or more independent subnetworks within a given
anatomical structure, such as the rostral and caudal networks
of the hippocampus, provides an attractive index to test func-
tional convergence of anatomical structures. It is expected that
a decline in functional convergence would be observed during
the course of neurodegenerative conditions. By employing
conjunction analyses, previous research investigating the
functional segmentation of brain structures identified areas
that converge or share processing components in the amygda-
la, insula, and cingulate cortex [11, 12]. However, the appli-
cations of functional convergence to neurological and psychi-
atric diseases are poorly understood.

Rostral-caudal hippocampal convergence (rcHC) is of in-
terest in the context of AD due to the early appearance of
neurofibrillary tangles in the hippocampus [1], which may
disrupt patterns of hippocampal connectivity. While recent
research has pointed to a decrease in coherent neuronal activ-
ity between the rostral and caudal hippocampus [13, 14], the
functional integrity of the hippocampus has received little at-
tention. Crucially, these previous reports failed to differentiate
early MCI (EMCI)from late MCI (LMCI), a distinction which
allows for a more granular description of the AD spectrum and
may identify a distinct clinical stage that may be optimal for
disease-modification interventions.

As such, we sought to study the rcHC by probing areas
simultaneously connected with both the rostral and caudal
hippocampi. Furthermore, we measured the impact of AD
stages on the stability of these connections. We hypothesized
a progressively declining rcHC functional organization across
the pre-dementia stages of AD.

Materials and Methods

Participants

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) da-
tabase (adni.loni.usc.edu, accessed December 2017). The
ADNI was launched in 2003 as a public-private partnership
led by principal investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progres-
sion of MCI and early AD.

The ADNI study received approval from the Institutional
Review Board of each participating institution. Informed writ-
ten consent was obtained from all participants in this study.

Participants that are free of memory complaints and
have normal memory function, as assessed using a
Logical Memory II subscale and the Mini-Mental Score
Test (> 24), were characterized as controls. MCI partici-
pants were defined as (i) a subjective memory concern as
reported by subject, study partner, or clinician; (ii) ab-
normal memory function documented by scoring within
education adjusted ranges; (iii) MMSE score between 24
and 30; (iv) CDR = 0.5 with a memory box score of at
least 0.5; and (v) general cognition and functional per-
formance sufficiently preserved such that a diagnosis of
AD cannot be made by the site physician at the time of
the screening visit. MCI patients were further divided
into early and late MCI groups using a Memory Scale
Logical Memory II, as specified by ADNI guidelines
(Alzheimer’s Disease Neuroimaging [15]). AD patients
had a Mini-Mental score below 23, presented noticeable
behavioral and memory problems, and had amyloid-
positive scans, as assessed using a whole-brain
(18F)AV-45 PET standard uptake value ratio (SUVR)
threshold of 1.26 [16]. Amyloid-negative AD patients
were excluded in an effort to obtain a more homogenous
group with a similar pathophysiology, given that previ-
ous studies demonstrated significant effects of brain am-
yloid on resting-state networks [17]. The inclusion/
exclusion criteria adopted by the ADNI are described in
detail at www.adni-info.org (accessed December 2017).

Image Acquisition and Preprocessing

ADNI MRI and rs-fMRI standard acquisition protocols are
detailed elsewhere (http://adni.loni.usc.edu/methods;
accessed December 2017). The rs-fMRI database was
preprocessed using the Neuroimaging Analysis Kit (NIAK)
release 0.7.1 [18]. Each rs-fMRI dataset was corrected for
inter-slice difference in acquisition time, and the parameters
of a rigid-bodymotion was estimated for each time frame. The
median volume of one selected fMRI run for each subject was
co-registered with an individual T1 scan usingMinctracc [19],
which was itself non-linearly transformed to the Montreal
Neurological Institute (MNI) standard template [20] using
the CIVET pipeline [21] (Fig. 1). The rigid-body transform,
fMRI-to-T1 transform, and T1-to-stereotaxic transform were
all combined, and the functional volumes were resampled in
the MNI space at a 3-mm isotropic resolution. A “scrubbing”
method was used to identify volumes with excessive motion
(frame displacement greater than 0.5) [22]. The following nui-
sance parameters were regressed out from the time series at
each voxel: slow time drifts (basis of discrete cosines with a 0.
01-Hz high-pass and 0.1 low-pass cutoff), average signals in
conservative masks of the white matter and the lateral ventri-
cles, and the first principal components (95% energy) of the
six rigid-body motion parameters and their squares [23, 24].
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The fMRI volumes were finally spatially smoothed with a 6-
mm isotropic Gaussian blurring kernel. A more detailed de-
scription of the pipeline can be found on the NIAK website.
All images were manually inspected for issues in conversion,
co-registration, BOLD signal, and motion using the NIAK
protocol.

In order to ensure that hippocampal connectivity decline is
not due to declining hippocampal volume, we employed hip-
pocampal volume as a covariate in our analyses. To determine
hippocampal volume, T1 MRI images were automatically
segmented using the MAGeT Brain algorithm [25, 26]. Five
high-resolution atlases of the hippocampus [27] were used as
inputs to label a subject of a cohort, automatically generating a
template library which is then used for segmentation of indi-
vidual subjects’ MRIs. These methods are described in detail
elsewhere [26, 28]. All automated segmentations were manu-
ally inspected by an expert rater with over two years of hip-
pocampal segmentation experience. All scans with

susceptibility artifacts (i.e., signal dropout) in the medial tem-
poral lobes were excluded. Images that failed co-registration
quality assessment by visual inspection were excluded.

Imaging Statistical Analysis

First, we generated functional connectivity maps using the
fMRIStat-fmrilm toolbox in MATLAB 2012b [29]. Seeds
of 3.5-mm radius spheres were generated for both the left
(MNI world coordinates 28, − 16, − 20) and right (28, −
16, − 20) anterior, and left (− 28, − 37, − 4) and right (28,
− 37, − 4) posterior hippocampal seeds on the MNI tem-
plate space in each group. To select the seeds’ location, we
avoided areas susceptible to hippocampal atrophy and sig-
nal dropout, using a probabilistic map of the hippocampi
per diagnostic group (Supplementary Fig. 1) and a coeffi-
cient of variation map (Supplementary Fig. 2). Finally, an
expert rater verified that all seeds were within each

Fig. 1 Summary of imaging
analysis steps. Imaging analysis
was conducted using four
imaging pipelines. CIVET
preprocessed structural images,
MAGeT performed an automatic
segmentation of the
hippocampus, NIAK
preprocessed rs-fMRI images,
and fMRIStat-fmrilm generated
the hippocampal connectivity
maps. Subsequently, statistical
analyses were conducted using
fMRIStat-multistat. The primary
outcome measures were (1) a
conjunction analysis per group
and (2) a group comparison of
rcHC connectivity strength using
analysis of covariance
(ANCOVA).
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individual’s non-linearly transformed T1 MRI hippocam-
pi. The seed selection process is illustrated in Fig. 2.

Subsequently, we concatenated multiple fMRI runs to
generate one connectivity map for each subject with a
fixed effects general linear model, using the fMRIStat
toolbox. To measure rcHC, we performed a conjunction
analysis between the rostral and caudal seed in each diag-
nostic group to highlight the regions simultaneously func-
tionally connected with the rostral and caudal seed (Fig. 3)
[30]. In the present analysis, performing a conjunction
analysis provides a measure of integration between the
rostral and caudal hippocampal systems across disease
stages. Conjunction, the joint refutation of multiple null
hypotheses [31], is stringent in nature as it requires the
co-occurrence of functional significance in independent
brain images and has been previously used to characterize
patterns of activation in other brain structures [32].
Performing a conjunction analysis provides a measure of
integration between the anterior and posterior hippocam-
pal systems, providing information about rcHC changes
within a disease. Because the present study employed only
two statistic maps in every conjunction analysis (one for
the rostral and caudal hippocampal seeds), this method is
valid for determining the conjunction of the two separate
effects [33].

Then, the overlapping areas within the hippocampi in con-
trols served as a mask, which was applied to every individual
connectivity map. The average z-values under the mask were
calculated, corresponding to the rcHC network strength, and
served as input for the analysis of covariance (ANCOVA)
model to compute group differences. Sex, age, scanning site,
motion, and hippocampal volume served as covariates to de-
termine group differences. The average and 95% confidence
interval are depicted in Fig. 4. To determine if there is added
value of rcHC over hippocampal volume as a biomarker of
disease severity, we conducted an independent sample t test
comparing the hippocampal volumes of early MCI (EMCI)
and late MCI (LMCI).

To validate our dataset with previous findings, we assessed
the patterns of functional connectivity between the hippocam-
pus and other brain structures and generated group-level t-
statistical parametric maps of correlation coefficients using a
mixed effects model (connectivity maps using multistat in
fMRIStat toolbox), with sex, age, scanning site, motion, and
hippocampal volume as covariates. We masked these extra-
hippocampal connectivity parametric maps with the average
connectivity maps from controls, thresholded at p ≤ 0.05 to
discard regions uncorrelated with the seed points, and
corrected for multiple comparisons using a Random Field
Theory (RFT) statistical significance level of p ≤ 0.05 [34,
35]. Differences in extra-hippocampal connectivity between
controls and patient groups are presented in Fig. 5. Laterality
differences in extra-hippocampal connectivity are presented in
Supplementary Fig. 4. Figures were projected on a volume or
surface space and generated using MINC Register, Display,
and NeuroVault [36].

Data Availability Data used in preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). As such, the
investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not
participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.
loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
Acknowledgement_List.pdf

Results

Demographic Differences

Out of 194 participants, six AD patients were amyloid-
negative and therefore excluded. An additional 18 subjects
were excluded during quality control because of poor acqui-
sition (ex. signal dropout), or co-registration failures.

Fig. 2 Seed selection process.
The seed selection process took
into account the structural
differences of the hippocampus,
as well as the resting-state fMRI
signal strength. The seed points
are placed in areas (1) with low
susceptibility to atrophy and sig-
nal drop-out and (2) within the
range of the hippocampus across
all individuals after non-linear co-
registration

Mol Neurobiol (2019) 56:8336–8344 8339

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


No differences in age, sex, and education were ob-
served. Furthermore, no differences in image frame dis-
placement were observed between disease groups.
MMSE scores (p ≤ 0.001), ApoE4 genetic (p ≤ 0.001),
and amyloid status (p ≤ 0.001) were significantly differ-
ent in AD (Table 1).

The Intra-Hippocampal Network Conjunction
Diminishes with Disease Severity

The conjunction analysis showed significant overlap in healthy
controls between the rostral and caudal hippocampal networks.
In patients with a more severe disease, we observed a bilateral
decrease of the overlap in between the hippocampal networks
(Fig. 3). These results are independent of declining hippocampal
volume across disease states and of in-scanner head motion as
both were employed as covariates in the linear model. No signif-
icant difference in hippocampal volume was observed between
EMCI (4564 ± 547) and LMCI (4786 ± 603) (p= 0.0841).

RcHC Strength Decrease Is Driven by Changes
in the Anterior Hippocampal Network

The left anterior rcHC strength was decreased in patients with
more severe disease (EMCI vs controls, p = 1; LMCI vs con-
trols, p = 0.037; AD vs controls, p = 0.007), whereas the left
posterior hippocampus remained the same (EMCI vs controls,
p = 1; LMCI vs controls, p = 0.60; AD vs controls, p = 0.11)
(Fig. 4). The decline was also present with the right anterior

Fig. 3 Reduced rcHC in patients with more advanced disease. rcHC, as
defined by the conjunction analysis between the rostral and caudal
hippocampal networks, is reduced in patients with more advanced

disease (highlighted in white). The figure is a result of the collapses
across all subjects within a group

Fig. 4 Individual rcHC connectivity strength by seed and diagnosis
group. The error bars show the 95% confidence interval. While both the
left and right anterior rcHC showed declines with disease severity, the
posterior seeds did not. *p ≤ 0.05, **p ≤ 0.01
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seed (EMCI vs controls, p = 0.99; LMCI vs controls, p = 0.52;
AD vs controls, p = 0.046), but not the right posterior hippo-
campus (EMCI vs controls, p = 0.99; LMCI vs controls, p =
0.59; AD vs controls, p = 0.27).

Reductions in Whole-Brain Extra-Hippocampal
Connectivity in LMCI and AD Compared with Controls

No significant differences were observed between EMCI and
controls after multiple comparison correction. In contrast,
LMCI patients, when compared with controls, showed

widespread functional disruptions between both the anterior
and posterior hippocampi and the whole brain. AD patients
exhibited similar disconnection patterns to LMCI, but with
larger and more extended regions (Fig. 5).

Discussion

In summary, we characterized rcHC as the overlap between
the rostral and caudal functional networks of the hippocam-
pus. We expanded on previous investigations of functional

Fig. 5 Extra-hippocampal connectivity differences between controls and
patient diagnostic groups. Positive t values indicate a reduction in the
connectivity in the disease state vs controls. Whereas EMCI showed no
differences, both LMCI and AD suffered connectivity decreases between
the anterior hippocampus and the parahippocampal gyrus, the PCC, and
the inferior parietal cortex. In addition, LMCI and AD also showed

decreases in the connectivity between the posterior hippocampus and
the middle temporal gyrus, the fusiform gyrus, and the occipital lobe.
No significant connectivity increases in disease states were observed.
Connectivity increases *RFT-corrected (LMCI and AD, corrected
threshold p ≤ 0.05), with minimum cluster size = 238 mm3 and supra
threshold = 3.1893 for the controls vs AD contrast

Table 1 Group demographics
Controls EMCI LMCI AD

N 56 48 35 31

Age (years) 75 ± 7 72 ± 7 73 ± 8 73 ± 7

Sex (% male) 55.4% 54.2% 40.0% 58.1%

Handedness (% right-handed) 87.5% 98.0% 94.3% 93.5%

Education (years) 17 ± 2 16 ± 3 17 ± 2 16 ± 3

MMSE (/30) 29 ± 2 28 ± 2 28 ± 2 23 ± 3***

ApoE4 (% positive) 28.6% 47.9% 37.1% 58.1%***

Hippocampus volume (mm3) 4871 ± 615 4564 ± 547 4786 ± 603 4238 ± 655***

Frame displacement (mm) 0.3 ± 0.1 0.3 ± 0.2 0.3 ± 0.1 0.3 ± 0.1

Mean ± standard deviation. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Significance is calculated as compared with
controls
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connectivity in AD by employing a conjunction analysis,
which provides a measure of convergence between the rostral
and caudal hippocampal systems, and permits us to follow the
rcHC changes within a disease. We found that rcHC reduc-
tions were apparent in LMCI and AD, were driven by a de-
clining anterior network bilaterally, and were independent of
hippocampal volume. Furthermore, rcHC in the left anterior
hippocampal seed proved more sensitive than hippocampal
volume in distinguishing EMCI from LMCI. Finally, we val-
idated our dataset by generating connectivity maps between
the hippocampus and the rest of the brain and observing de-
clines in LMCI and AD, in agreement with previous findings
[4, 37]. While we did not observe changes between cognitive-
ly normal controls and EMCI, this could be because the pres-
ent analyses were corrected for hippocampal volume in con-
trast to previous studies reporting differences between cogni-
tively normal and EMCI subjects [38].

Disrupted patterns of connectivity within and outside of the
hippocampus were simultaneously observed in LMCI but not
in earlier states, suggesting that AD pathophysiology affects a
hippocampal hub connected to both internal and external re-
gions. Combined with the dissociation between the anterior
and posterior hippocampus, our results suggest that such a hub
resides in the anterior section of the hippocampus. In addition,
no increases in rcHC were observed with increasing disease
severity, suggesting that rcHC may be a useful functional bio-
marker of AD because it does not confound the compensatory
neural activity frequently observed in other fMRI biomarkers
[39, 40]. Because rcHC but not hippocampal volume was
different between EMCI and LMCI, our results suggest that
changes in functional convergence may prove to be a sensitive
biomarker of disease severity along the AD spectrum.

The functional role of the hippocampus varies across its
longitudinal axis; specifically, the anterior hippocampus con-
tributes to emotional reactions and the posterior hippocampus
to cognitive functions [41, 42]. As such, our results—the dis-
ruption of the anterior system and preservation of the posterior
one—fit with early AD neuropsychiatric symptoms of apathy
and mood disorders [43–45]. Furthermore, the absence of a
conjunction between the anterior and the posterior hippocampi
in LMCI indicates hippocampal dysfunction in individuals
close to converting to AD. As these functional connections
are a substrate of the BOLD signal, our findings may be related
to synaptic activity changes [46]. Indeed, previous histological
investigations suggest the loss of hippocampal cells and the
deletion of synapses during the course of AD. In particular,
the dentate gyrus exhibits reduced number of synapses in the
outer molecular layer in early AD; CA1 has lower synaptic
gene expression and neuronal count in MCI; and CA3 neuronal
density is decreased in AD [47–51]. In addition, these synaptic
density changes are highly correlated with cognitive impair-
ment [52]. Since a significant part of the hippocampal forma-
tion’s intra-circuitry is unidirectional, from the dentate gyrus to

the subiculum, any disruption along that path will likely con-
tribute to decline in rcHC [53].

Some methodological limitations of our study make replica-
tion of these results desirable. Firstly, the ADNI dataset control
cohort tends to be more educated with a higher MMSE score
and have a higher representation of participants with a family
history of AD. Secondly, despite correcting for structural
changes using a non-linear co-registration and including the
volume of the hippocampus as covariate across our analyses,
it remains possible that structural differences such as hippocam-
pal shape [54] impacted the present results. Furthermore, be-
cause amyloid positivity was not an inclusion criteria for the
control andMCI subjects, we cannot conclude that these results
are representative of the entire Alzheimer’s disease spectrum, as
some individuals may not have Alzheimer’s pathology. Finally,
given the cross-sectional nature of the present study, our results
cannot infer a predictive value of the hippocampal connectivity
in the progression towards AD.

In conclusion, we observed a decline in hippocampal func-
tional network convergence in EMCI, LMCI, and AD.
Furthermore, the anterior hippocampal network is disrupted
in LMCI and AD and loses its synergy in patients with more
advanced disease. Our study warrants the segregation of hip-
pocampal subfields across its longitudinal axis when
conducting imaging studies. Finally, our results support a
framework for the investigation of functional convergence as
a biomarker of neurological and psychiatric disorders.
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